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SUMMARY

A periodic superimposed motion may notably in�uence the �ow structure and the development of
the convective heat transfer relative to non-deformable case. In particular, a radial deformation of a
circular cylinder, may cause a possible synchronization with the cylinder wake, which is itself periodic
when Vortex Street takes place. This synchronization phenomenon, often called ‘lock-in’, may cause
undesirable e�ects, but may also constitute a way of controlling the wake development.
Body deformability may be used as wake control device that would favourably a�ect the interplay of

primary and secondary vorticities, thus reducing the drag coe�cient. These numerical and experimental
studies are done herein for a Reynolds number equal to 23500. The problem is resolved by using
the Navier–Stokes equations in the vorticity-stream function form. The vorticity transport equation is
solved by a second-order �nite di�erence method in both directions of the domains. The Poisson
equation for the stream-function is solved by a SOR method. The advance in time is achieved by a
second-order Adams–Bashforth scheme. The e�ect of turbulence is represented by eddy viscosity �t ,
which is determined by a sub-grid-scale model. In the present study, we use a Smagorinsky model.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the case where the cylinder is free from superimposed motion, but �exibly attached, the
�uctuating force associated with the periodic shedding of vortices may cause the cylinder to
oscillate if the damping of the system is su�ciently small. This phenomenon, known as ‘self-
exited’ or ‘induced-vibrations’, has important practical consequences, often causing damage in
industrial structures, because of the possibility of corresponding large amplitude values which
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may attain several cylinder diameters if the aerodynamic forces come into resonance with the
eigenfrequencies of the cylinder [1].
In most experimental arrangements, especially in air because of its small density, the cylin-

der appears to oscillate in a direction transverse to the incident �ow. Furthermore, if the free
stream velocity is such that it induces a vortex shedding locks on the cylinder frequency, then
the vortex con�guration in the wake may be clearly modi�ed compared with that of a station-
ary cylinder. In particular, at synchronization, besides the fact that the shedding frequency is
shifted due to its capture by the natural body frequency, oscillations induce a clear coupling
of the �ow along the span of the body [2].
In the transition domain 150¡Re¡350, slantwise vortex shedding is replaced by parallel

vortex [3], delaying the decay of vortices into turbulent ones. Consequently, the wake is
maintained laminar for a larger distance and for a greater range of the Reynolds Number.

2. BASIC EQUATIONS

Consider the unsteady �ow past a circular cylinder whose radius (of initial value a0) deforms
uniformly with a sinusoidal function of deformability, started impulsively at the same time
into rectilinear motion, with a constant velocity U∞, in a 2D viscous incompressible �uid
�ow initially at rest. In the case of a constant physical properties � and � of the �uid (this
condition is satis�ed even by air with a good agreement, when the velocity of the �ow in less
than 50m=s and the di�erences of the temperature do not exceed 50K), the unsteady Navier–
Stokes equations in stream function and vorticity formulation for the �ow past a circular
cylinder can be written in polar co-ordinates as:

@!
@t
=

!
1 + f

@f
@t
+

k−1( @k@�)
−1

1 + f

[
@!
@�

@ ̃
@�

− @!
@�

@ ̃
@�

]
+

1
1 + f

(
2
Re
+
2
Ret

)

×
((

@k
@�

)−2 @2!
@�2

+ k−2
@2!
@�2

+

(
k−1

(
@k
@�

)−1
−
(
@2k
@�2

)(
@k
@�

)−3) @!
@�

)
(1)

!=
(
@k
@�

)−2(@2 ̃
@�2

)
+ k−2

(
@2 ̃
@�2

)
+

(
k−1

(
@k
@�

)−1
−
(
@2k
@�2

)(
@k
@�

)−3) @!
@�

(2)

Here the stream function is de�ned by

u1 =− 1
r1

@ 1
@�

and v1 =
@ 1
@r1

(3)

the only non-zero component of the vorticity $ is given by

$=
1
r1

(
@
@r1
(v1r1)− @u1

@�

)
(4)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930



RADIAL DEFORMATION OF A CIRCULAR CYLINDER 907

and the non-dimensional quantities are given by
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The e�ect of turbulence is represented by eddy viscosity �t , which is determined by a subgrid
scale model. In the present study, we use the Smagorinsky model:

�t =(Cs�)2
√
2SijSij (6)

where Cs is the Smagorinsky constant, � is the length scale (taken here to be the local mesh
size), and Sij is the strain rate tensor.

2.1. Initial conditions

The cylinder, as is suddenly started from rest, has the following initial conditions:

 ̃ =0 and !=0 at t=0 (7)

2.2. Boundary conditions

2.2.1. For �=0. The cylinder, being radially deformable, has the following velocity compo-
nents at the wall:
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where k(0) is the value of k(�) for �=0 (k(0)= �+ �=1).
It results from the previous equation that  ̃ is a non-uniform function on the surface of the

cylinder. Hence, a uniform function  is introduced by

 =  ̃ + k(0)
@f
@t

� (10)

2.2.2. For �→∞. The stream function of the �ow past a circular deformable cylinder is
well-known:
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where k(�∞) is the value of k(�) corresponding to the maximum radius of the computational
domain.
By introducing the uniform stream function (10), the boundary condition is determined by
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2.2.3. New system to resolve. The new system to resolve is determined by

@!
@t
=

!
1 + f

@f
@t
+G (13)

!=
(
@k
@�

)−2(@2 
@�2

)
+ k−2

(
@2 
@�2

)
+

(
k−1

(
@k
@�

)−1
−
(
@2k
@�2

)(
@k
@�

)−3) @!
@�

(14)

where

G=
k−1

(
@k
@�

)−1

1 + f
−
[
@!
@�

(
@ 
@�

− k(0)
@f
@t

)
− @!

@�
@ 
@�

]
+

1
1 + f

(
2
Re
+
2
Ret

)

×
((

@k
@�

)−2 @2!
@�2

+ k−2
@2!
@�2

+

(
k−1

(
@k
@�

)−1
−
(
@2k
@�2

)(
@k
@�

)−3) @!
@�

)
(15)

with the new boundary conditions
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3. FORCES ON THE BODY

The drag force may be computed as the sum of the pressure drag fp and the friction drag ff .
The pressure drag can be determined from the vorticity �ux on the cylinder surface as
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while the friction drag may be computed from the vorticity on the cylinder surface as

Ff =
∫ 2�

0
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e� d� (20)

Hence, the total drag force on the body follows

FT =Fp + Ff (21)

and the drag coe�cient of the body is given by

CD =
FT · eX
U 2∞a

(22)

4. NUMERICAL METHOD

The second-order Adams–Bashforth temporal scheme is used together with central di�erences
in space for Equation (11) on a grid de�ned by �i=(i−1)��, i=1; 2; : : : ; M ; �j=(j−1)��,
j=1; 2; : : : ; N ; ��= �∞=(M − 1) and ��=2�=(N − 1). The domain is truncated in the �
direction at �∞. As a result, the calculations of !n+1
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and the superscript n characterizes the time discretization. For the stream function we use a
SOR method:

 n
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where
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	 is the over-relaxation parameter and may be taken between 1 and 2. For the downstream
boundary condition at in�nity, an open boundary condition is established by assuming that
the viscous-di�usive e�ect is negligible and then the vorticity equation is

@!
@t

− !
1 + f

@f
@t

−
k−1

(
@k
@�

)−1

1 + f

[
@!
@�

(
@ 
@�

− k(0)
@f
@t

)
− @!

@�
@ 
@�

]
=0 for �→∞ (31)

@ 
@�
=

1
2��

( (�∞; �+��)−  (�∞; �−��));

@!
@�
=

1
2��

(!(�∞; �+��)−!(�∞; �−��))

@ 
@�
=
1
��
( (�∞; �)−  (�∞ −��; �));

@!
@�
=
1
��

(
!n+1(�∞; �) +!n−1(�∞; �)

2
−!(�∞ −��; �)

)

This condition is similar to the so-called ‘Radiant Sommerfeld condition’. It remains only to
determine the surface vorticity over the cylinder. Equation (12) at �=0 is(
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Figure 1. System of co-ordinates.

Figure 2. Experimental device.

For the stream function at boundary (for �→∞), after some advances in time, we considered
an open boundary condition, i.e. we replaced the condition (17) by

@ 
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=
1
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(
 n+1(�∞; �) +  n−1(�∞; �)

2
−  (�∞ −��; �)

)
=0 (33)

or

 n+1(�∞; �)=2 n(�∞ −��; �)−  n−1(�∞; �) (34)

5. EXPERIMENTAL VALIDATION

For the experimental validation, we used a mechanically deformable cylinder (Figures 1–2).
The experimental device is composed of:

• an electric motor of which the speed of rotation NR can vary, 0 to 300 rpm,
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• two cams and eight stems transforming rotational movement into radial variation of the
cylinder,

• a smoke generator and a camera.

The interval of time between two pictures is �t1= 1
24 s. The outer �ow velocity is U∞=2:20m=s.

The initial radius of the cylinder is a0 = 0:08 m.
With these data, the initial �ow Reynolds number is then Re0 = 2U∞a0=�≈ 23 500 and the

dimensionless time is �t=
�t1U∞

a0
= 1:15.

Cams have been designed in a way such that one rotation of the motor correlates to four
cycle of the cylinder. So, the dimensionless frequency of deformation is �=4NR a0=60U∞.
Here, NR is the rotation speed of the motor. We did our experiences for three rotations
speeds of the motor: NR1 =170 rpm, NR2 =220 rpm and NR3 =300 rpm, which corresponds
to �1 =0:41, �2 =0:53 and �3 =0:73.

6. RESULTS FOR Re0 = 23 500

We present here the results for the �ow at Re0 = 23 500. The dimensionless time step is
0.0025, and the grid is 300 divisions in both radial and circumferential directions with the
outer boundary at 30 times the diameter of the cylinder. The parameter Cs is chosen to be
0.15 and the parameters � and � are chosen to be 0.5. The amplitude of deformation is chosen
to be 0.05.

6.1. Non-deformable cylinder

At the beginning of the movement, one notes that a thin primary vorticity layer develops itself
all around the cylinder. At t=2, we already see the apparition of two swellings, localized on
each side of the downstream stagnation point. These swellings result from the formation of
two secondary vortices resulting themselves from the apparition of a reversal �ow.
The Reynolds number being important, the primary and secondary vortices are powerful.

By the fact of their strength, the secondary vortices develop themselves quickly and push
away the primary vortices of the cylinder surface. From t=3, one notes that the secondary
vortices penetrate the primary vorticity layer that which feeds the primary vortices and cut
these links between t=4 and 5. The primary vortices move away from the cylinder. From
t=7, we note the beginning of the primary vortices detachment and the apparition of the
Vortex Street.
Thereafter, there is a repetition of these phenomena. Indeed, as leaving of, the primary

vortices take a part of secondary vortices. Thus, they lose their strength. Even a new
primary vortex takes birth at the same places as that one detached previously. This new
pair of primary vortices gives birth to a reversal �ow, which will permit the apparition of a
new secondary vortex pair, which grows and cuts links between the cylinder and the pair of
primary vortex. These are going, again, to detach and to feed the Vortex Street.
At least, we can note the likeness between the experimental visualization and the evolution

of the numerical simulation. Indeed, one notes that vortex street appears at the 7th picture for

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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t1 = 0.042s to t1 =  0.625s t1 = 0.667s to t1 =  1.250s 

Figure 3. Experimental visualization of the evolution of the streamlines for a non-deformable cylinder.

the experimental visualization (Figures 3 and 4). The interval of time between two pictures
being 1

24 of second, it occurs at t1 = 0:3s. It corresponds to the non-dimensional time t=8:25.
It recon�rmed again approximately the numerical simulation results, where one can see that
at t=8, primary vortex, localized at the intrados, begins to detach (Figures 5 and 4).
Besides, we notice that the primary vorticity layer spreads in the near wake of the cylinder.

This phenomenon is found, again, as well in the pictures of the experimental visualization as
by the results of the numerical simulation (Figures 3, 5 and 6).
For the drag coe�cient, we note an oscillation of values at the beginning of the simulation

(see Figure 7). Values of the CD �uctuate between −2 and 2. This oscillation attenuates itself
during this time and stabilizes from t=12 about the value of CD =0:4.

6.2. Deformable cylinder

6.2.1. �1 =0:41. The vibration of the cylinder radius modi�es appreciably the structure of
the �ow around it.
Throbbing, transmitted by the cylinder to the �uid that surrounds it, creates a secondary

�ow that attracts the �ow toward the cylinder when this one retracts and repulses it when
the cylinder dilates (Figure 8). This secondary �ow plays an important role in the evolution
of the �ow structure. We note that the formation and the detachment of primary vortices

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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t1 = 0.3s t = 8 t = 8.5 

Figure 4. Comparison between experimental visualization and numerical
simulation (detachment of the intrados vortex).

are accelerated. Indeed, the secondary �ow gives more strength to the secondary vortices and
permits them to cut more quickly the links between the primary vorticity layer and the primary
vortices (see Figure 9). The primary vortices are less powerful and smaller than those we had
for the �ow around a non-deformable cylinder. But one notes that, contrary to non-deformable
case, the �rst primary vortex pair is not able to move away from the cylinder, which attracts
it toward its surface when it retracts (Figure 10, t=4). The second primary vortex pair, that
is already formed and detached, reaches up the �rst one, merges with it and forms a more
powerful pair of primary vortex (Figure 10, t=5–7). We see, then, that the third primary
vortices pair is accelerated by the secondary �ow and reaches up the �rst two pairs already
merged (Figure 10, t=8 and 9). This primary vortex pair, which becomes very powerful, can
resist the cylinder attraction and moves away while spreading in the wake (Figure 10, t=10).
We note, thereafter, some regularity in the primary vortices formation and detachment. This
periodicity is equal to t=2:5, that is to say the frequency f=0:4. This frequency is nearly
the same as that of the cylinder radius deformation. Therefore, we can say that the cylinder
captured the Vortex Street frequency (Figure 10).
We note that the concordance of the numerical simulation results and the experimental

visualization is very satisfactory. So, we can note that at t1 = 0:17 s, which corresponds to
t=4:67 (Figure 11), there are two primary vortex pairs attached to the cylinder (�gure gives
�ow streamlines comparing the experimental visualization). There exists a small dissymmetry
in the experimental visualization, which is surely owed to experimentation conditions. At
t1 = 0:75 s, which corresponds to t=20:63 (Figure 12), we see, �rst of all, some deviation
of �ow downwards as well for numerical simulation as for the experimental visualization.
We can also notice some similarities existing between the experimental visualization and the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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Figure 5. Numerical visualization of the vorticity for a non-deformable cylinder (t=1–30).

numerical simulation concerning the vortices dispositions (the same happens for t1 = 1 s, that
corresponds to t=27:5 (Figure 13), except the fact that the wake is now become powerful
and horizontal).
The increase of the cylinder diameter is characterized by the creation of a secondary

�ow (Figure 8), which, on the rear part of the cylinder, has tendency to propel the cylin-
der [3]. This phenomenon has some favourable repercussions on the evolution of the drag
coe�cient [3].
We made to coincide, in the numerical simulation, the impulsive start of the movement

with an increase of diameter of the �rst oscillation cycle. When the wall deformation velocity
becomes maximum, the strength of the secondary �ow is, then, maximum. The strength of
propulsion force created by the cylinder, as it is expelling the �uid of the secondary �ow
rearward, is the most intense. This force is to be added to e�ects of the impulsive starting.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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t1 = 1.042s t = 28.5 t = 29 

Figure 6. Comparison between experimental visualization and numerical simulation (primary vorticity
layer spreads in the near wake of the cylinder).

Figure 7. Evolution of the drag coe�cient for a non-deformable cylinder.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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Figure 8. E�ect of the radius vibration on the primary vorticity layer (creation of secondary �ow).

t1 = 0.08s to t1 =  0.667s t1 = 0.708s to t1 =  1.292s 

Figure 9. Experimental visualization of the evolution of the streamlines
for a deformable cylinder (� = 0:41).

The drag coe�cient decreases (Figure 14). Unfortunately, the more one brings closer to
t=0:625, more slow is the wall deformation velocity. The intensity of the propulsion force,
created by the cylinder, decrease. Besides, we see the beginning of the development of the
primary vorticity layer (Figure 10). Therefore, there is the reduction of the drag coe�cient

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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Figure 10. Numerical visualization of the vorticity for a deformable cylinder (t=1–30).

slope between t=0:5 and 0.625. From t=0:625, the cylinder diameter decreases, with a
wall deformation velocity that increases to reach its maximal value at t=1:25. During this
quarter of period, the cylinder attracts the �uid. Approaching to t=1:25, the cylinder attracting
velocity increases. In the rear part of the cylinder, the outer �uid �ow, attracted by the cylinder,
comes to strike it and propels it forwards [4]. The drag coe�cient decreases more quickly
and reaches some negative values (Figure 14). The cylinder is propelled. Between t=1:25
and 1.875, the cylinder diameter continues to decrease, but with a wall deformation velocity
that decreases until it reaches zero for t=1:875. The strength of attracting, exercised by the
cylinder on the �uid �ow, decreases. The strength with which this outer �uid �ow comes

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930
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Figure 11. Comparison between experimental visualization and numerical simulation
(t1 = 0:17 s which correspond to t=5).

to hit the rear of the cylinder decreases until it annuls. Besides, we note a primary vortices
development, which remain attached to the cylinder (Figure 10). The drag coe�cient increases
and reaches some positive values (Figure 14). The cylinder is braked. From t=1:875, the
cylinder diameter restarts to increase with a wall deformation velocity that increases to reach
its maximum at t=2:5. The secondary �ow reappears. More one advances in time, more
powerful is this secondary �ow. The secondary �ow permits to increase the secondary vortices
strength which arrive to cut links between the primary vortices and the cylinder at t=2. The
drag coe�cient restarts to decrease (Figure 14).
Then, we note a repetition of phenomena we have just described (Figure 14). Indeed, the

drag coe�cient evolution in time becomes periodic and of the same period as that of the
cylinder deformation (Figure 10). One can also see that the negative part is more important
than the positive part for every period. It means that the cylinder deformation can have some
favourable e�ects for the propulsion of the cylinder.

6.2.2. �2 =0:53. For this wall deformation frequency, we have the same phenomena
(Figure 15) as those we described in the previous case (Figure 10). Indeed, all phenom-
ena described previously are present again. The only di�erences come from the fact that the
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Figure 12. Comparison between experimental visualization and numerical simulation (�=0:41,
t1 = 0:75 s which correspond to t=20:5).

wall deformation frequency being higher, phenomena occur more quickly (Figure 15). So, the
period of primary vortices detachment, in this case, is equal to T =1:85 that correspond to a
frequency �=0:54 (Figure 15). This frequency is the one of the cylinder wall deformation.
The second di�erence is that the wall deformation frequency being higher, the strength with
which the cylinder pushes the secondary �ow and the primary vortices is more powerful.
We remark that the cylinder pushes away the primary vortices so far that they move away a
distance from where they are not brought back to the surface and do not merge anymore to
form some more powerful vortices. So a multitude of small vortices, which �ow out in the
wake, appears (Figure 15).
Comparing the experimental visualization (Figure 16) and the numerical simulation

(Figure 15), we note a good concordance in the apparition of di�erent phenomena and in
the wake structure (Figures 17–19).
Concerning the drag coe�cient we can note the same e�ects as those found previously

(Figure 20). The only two di�erences are that the strengths of attraction and repulsion of the
cylinder being more important, the minimal and maximal values of the drag coe�cient are
bigger (Figure 20) than those in the previous case (Figure 14). The second di�erence is that
the period of phenomenon repetition is, in this case, equal to T =1:85. It is the same as the
cylinder wall deformation period.
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Figure 13. Comparison between experimental visualization and numerical simulation
(�=0:41, t1 = 1 s which correspond to t=27:5).

Figure 14. Evolution of the drag coe�cient for a deformable cylinder (�=0:41).
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Figure 15. Numerical visualization of the vorticity for a deformable cylinder (t=1–30).

6.2.3. �3 =0:73. For this wall deformation frequency, we note that the �ow structure di�ers
slightly (Figure 21) from that for �=0:43 (Figure 15). The secondary �ow emanating from
the cylinder, when this one is in extension, is more powerful. In the same way, the attraction
that it exercises on the downstream �uid is more powerful. The formation and detachment
process of primary vortices pair is still the same (Figure 21). The di�erence, here, comes
from the fact that the detached primary vortex pair is propelled far downstream the cylinder
(Figure 21). It loses, then, its velocity when the cylinder begins to attract the �uid of the
downstream �ow. It reaches up and exceeds by the second pair, which is formed and detached.
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Figure 16. Experimental visualization of the evolution of the stream lines for a deformable cylinder.

Indeed, this new pair being closer to the cylinder, is propelled by a more important strength.
Besides, the intrados vortices (as well as extrados vortices) rotating in the same direction, the
emanating vortex of the second primary vortices pair, pushes the emanating vortex of the �rst
pair towards the cylinder (Figure 21). Thereafter, one can see that the third primary vortex
pair is formed and detached, and bene�ts, in addition to the propulsion due to the cylinder,
from the presence of the two previous pairs of primary vortices to escape quickly from the
attraction of the cylinder (Figure 21). Then, these vortices lose their velocities and some of
them merge to form some more powerful vortices. They can escape completely from the
attraction of the cylinder and form the vortex street. One notes that the frequency of primary
vortices detachment is equal to the wall deformation frequency. So, the period of primary
vortices detachment is T =1:35, which corresponds to a frequency of �=0:74.
It shows, once again, that the cylinder captures the frequency of primary vortices detach-

ment, con�rming, thus, the ‘lock-in’ process.
In this case, also, the comparison between the experimental visualization (Figure 22) and

the numerical simulation (Figure 21), are in good concordance concerning the apparition of
the phenomena as well as the wake structure (Figures 23–25).
The experimental visualization (Figure 23) shows that there are two vortices (on the intrados

and on the extrados): one attached to the cylinder and the other one slightly distant from
the cylinder. We note, on the other hand, that they are more distant from the downstream
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Figure 17. Comparison between experimental visualization and numerical simulation (�=0:53,
t1 = 0:125 s which correspond to t=3:5).

Figure 18. Comparison between experimental visualization and numerical simulation (�=0:53,
t1 = 0:583 s which correspond to t=16).
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Figure 19. Comparison between experimental visualization and numerical simulation
(�=0:53, t1 = 1 s which correspond to t=27:5).

Figure 20. Evolution of the drag coe�cient for a deformable cylinder (�=0:53).
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Figure 21. Numerical visualization of the vorticity for a deformable cylinder (t=1–30).

symmetry axis of the cylinder. We think that this di�erence is due to experimental conditions,
which are not so perfect as those of the numerical simulation.
In the second comparison (Figure 24), we see that there exists similarity in the experimental

visualization and the numerical simulation. Indeed, we see the primary vorticity layer length
down behind the cylinder and the small primary vortices situated behind the cylinder. We also
note, in the middle, behind the cylinder, the presence of a large vortex which results from
the presence of the three small primary vortices turning in sense, visible on the numerical
simulation.
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t1 = 0.167s to t1 =  0.750s t1 = 0.792s to t1 =  1.375s 

Figure 22. Experimental visualization of the evolution of the stream lines for a deformable cylinder.

In the last comparison (Figure 25), we see that the three small primary vortices, turning in
the same direction, are very close to the wall cylinder. It is visible in the two cases (numerical
and experimental). Evidently, the primary vorticity layer on the extrados is blocked by a big
vortex (formed by the three ones turning in the same direction). On the other hand, on the
intrados, it extends behind the cylinder.
Regarding the drag coe�cient we can also note the same e�ects as those found previously

(Figure 26). There are only two di�erences: (1) the strengths of attraction and repulsion of
the cylinder being more important, the minimal and maximal values of the drag coe�cient
are bigger (Figure 26) compared to those obtained in the previous case (Figures 14 and 20).
(2) The period of phenomenon repetition is, in this case, equal to t=1:35, the same as the
cylinder wall deformation frequency.

7. CONCLUSION

The present numerical simulation and experimental visualization concern the analysis of un-
steady separated �ow and ‘lock-in’ phenomenon around the impulsively starting deform-
ing cylinder for the Reynolds number Re0 = 23 500. Firstly, all the results, including the �-
phenomenon, previously detected either numerically or by experiment visualization [5, 6], have
been reproduced in detail in the preliminary non-deformable case.
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Figure 23. Comparison between experimental visualization and numerical simulation (�=0:73,
t1 = 0:167 s which correspond to t=4).

Figure 24. Comparison between experimental visualization and numerical
simulation (t1 = 0:625 s which correspond to t=17).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:905–930



RADIAL DEFORMATION OF A CIRCULAR CYLINDER 929

Figure 25. Comparison between experimental visualization and numerical simulation (�=0:73,
t1 = 1:083 s which correspond to t=30).

Figure 26. Evolution of the drag coe�cient for a deformable cylinder (�=0:73).
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We showed that the wall deformation created a secondary radial �ow at the neighbour-
hood of the surface cylinder [4, 7]. This secondary �ow plays a very important role in the
wake structure. Indeed, this secondary �ow permits to cut links between the cylinder and
the primary vortices quickly. It permits also to form Vortex Street more quickly, modifying
the wake structure considerably. We show that the wall deformation frequency in�uences the
vortex detachment frequency. So, the frequency of primary vortex detachment becomes equal
to the wall deformation frequency. This synchronization phenomenon, often called ‘lock-in’,
may cause undesirable e�ects, but may also constitute a way of controlling the wake develop-
ment. We show, also, that the cylinder wall deformation in�uences the evolution of the drag
coe�cient. Indeed, the variation of the drag coe�cient becomes periodic and of the same
frequency as the one of the wall deformation. An increase of the diameter has similar e�ects
as an injection of �uid on the entire cylinder surface, whereas a reduction of diameter of
diameter has some similar e�ects as suction on the entire cylinder surface [4]. In the growing
phase, the greater the frequency deformation of the cylinder, the more important the force
of propulsion created by the cylinder pushing the �ow outwards. So, the drag coe�cient de-
creases. In retraction phase, the cylinder attracts the �uid of the outer �ow. The greater the
deformation frequency, the bigger the attractive force in the rear part of the cylinder. So, the
free outer �uid �ow, attracted by the cylinder, comes to strike it and propel it forwards. The
drag coe�cient decreases and reaches some negative values. The cylinder is propelled.
So, body deformability may be used as wake control device that would favourably a�ect the

interplay of primary and secondary vorticity, thus reducing the drag coe�cient. We are trying
now to show that all that we found for this Reynolds number is valid for other bigger Reynolds
numbers. We are just achieving experimentations for Reynolds numbers from 100 000 to
5 000 000 with ‘PIV’ techniques and confronting them with results of the numerical simulation.
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